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Abstract. The van der Waerden permanent problem was solved using mainly algebraic methods. A 
much simpler analytic proof is given using a new concept in optimization theory which may be of 
importance in the general theory of mathematical programming. 
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1. Introduction 

The permanent of an n X n matrix X= [x,] is defined to be 

per(X) = C x1,41)X2,42) . . . %.+) . 
CrES, 

where S, is the group of permutations of the integers (1,2,3, . . . , n}. 
The matrix X is doubly stochastic if all of its elements are nonnegative and each 

of its rows and columns sum to 1. 
Arising from a problem devised by van der Waerden in 1926 [l], it was 

conjectured that the minimum value of the permanent of a doubly stochastic 
IZ x IZ matrix is attained when all the elements xii are equal to A. The problem is 
trivial for n = 2. 

In 1959 Marcus and Newman [2] proved it for n = 3; in 1968 Eberlein and 
Mudholkar [3] proved it for n = 4; and in 1969 Eberlein [4] proved it for n = 5. 

Finally, in 1981 proofs for the general case were found independently by 
Falikman IS] and Egorychev [6]. 

All these proofs for n Z- 3 are complicated. The proofs are mainly of an 
algebraic nature. In this paper a much simpler analytic proof is given through the 
use of a new concept in optimization theory which may be of importance in the 
theory of mathematical programming since it represents a substantial departure 
from the usual convexity assumptions in mathematical programming theory. 

2. Sufficient Conditions for Optimality 

Consider the general problem: 

Minimize P’(x) 

subject to G(x) s 0 , 

(2.1) 
(2.2) 
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where x E C C R”, F is a differentiable scalar function over C and G is an 
m-dimensional differentiable vector function over C. 

The Kuhn-Tucker necessary conditions for a minimum at U, where u satisfies 
(2.2), are that there exists a vector y E R” such that 

VF(u) + Vy’G(u) = 0, (2.3) 

y’G(u) = 0, (2.4) 

andya0, (2.5) 

where V is the n-dimensional differential operator with respect to U. 
Hanson [7] showed that the Kuhn-Tucker conditions are also sufficient for a 

global minimum if F and G belong to a certain class of functions now known as 
invex functions. Hanson and Mond [8] generalized this class to a class called Type 
I functions. In this paper the concept is generalized a little further, and we say 
that the functions F(x) and G(x) are respectively Weak Type I objective and 
Weak Type I constraint functions over C respectively at u with respect to the 
kernel ~(x, U) if there exist a sequence of n-dimensional vectors zck), k = 
1,2, . . . , and an n-dimensional function n(x, z~,)), where u is a limit point of the 
set {zk}, such that for x E C, zck) E C 

F(x) - F(u) 3 ,,umf;,,+o rl’k z&‘F(z& 

and 
- Gi(u) z= lim 

ll-~(k)ll+O 
v’k -q~~)VGi(z~~~) , i = 1,2, . . . , m , 

and it is assumed that the limits exist. 
To simplify the notation we shall write z for zck). 

THEOREM 1. Zf in problem (2.1)-(2.2), F(x) and G(x) are Weak Type Z 
functions, with bounded second derivatives in a neighborhood of u on the con- 
straint set (2.2) at a feasible point u with a common kernel 7(x, u), and the Kuhn- 
Tucker conditions are satisfied at u, then u is a global minimum for the problem. 

Proof. Let u and y be vectors satisfying the Kuhn-Tucker conditions (2.3)- 
(2.5). By the mean value theorem we have 

-& [F(z) + Y ‘G(z)1 = & [F(u) + Y ‘G(u)1 
I I 

+ (z - u)‘V $ [F(u’) + y’G(u’)] 
I 

for some vector ui between z and u, j = 1,2, . . . , n , 

= (z - u)‘V & [F(u’) + y’G(u’)] , j = 1,2, . . . , IZ . 
I 

by (2.3) . (2.6) 
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For any feasible x, 

since F is a Weak Type I objective function 

E lim i vj(x, 2) 
IIu-zII--0 j=l 

X - -& [y’G(z)] f (z - u)‘V -& [F(d) + y’G(u’)]] 
I I 

by (2.6) . 

c lim 2 vi(x, z) 
l/u-++0 j=l 

X - -$ (YWN] since the second derivatives 
I 

of F and G are bounded in a neighborhood of u , 

= ,,,$+o rl’k z)[-V~‘G(z)l 

2 ~‘G(u), since G is a Weak Type I constraint function, and y 3 0 , 

= 0, by (2.4), which proves the theorem. 

Hence if a common kernel 7(x, u) can be found for the objective and constraint 
functions in the van der Waerden problem at a point u which satisfies the 
Kuhn-Tucker conditions, then u will be a global minimum for the problem. 

3. The van der Waerden Problem 

An n X y1 doubly stochastic matrix X can be written in the form X = CyL, @P, 
where CyL, 0, = 1, 0,~ 0, and Pi is the i-th permutation matrix of order IZ (See 
Birkhoff [9]). 

So the van der Waerden problem is the following nonlinear programming 
problem: 

Minimize per (3.1) 

subject to 2 oj = 1 
i=l 

and0,>0, i=1,2,. . . ,n!. 

(3.2) 

(3.3) 
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Write per (3.4) 

where8=(8,,8,,. . . ,Q). 

The scalar function Q(0) is homogeneous of degree n, and by Euler’s theorem 
for homogeneous functions 

e’vqe) = n@(e) . (3.5) 

In place of problem (3.1)-(3.3) we consider the equivalent problem: 

Minimize f(0) = Q(0) - Cn( 5 ei - 1) + M,(8,!+, - 1)’ 
i=l 

(3.6) 

1 

subject to gl(0) = (Lgl 0, - 1)‘~ 0 , 

andgi+1(8)=-8,c0, i-1,2,. . . ,n!, 

(3.7) 

(3.8) 

where C, is a constant to be specified later, and the scalar 0nn!+l which obviously is 
forced to have the value 1 at minimum, is introduced for convenience later. A4, is 
a large positive constant. 

Since CyL, 0, = 1, by (3.7), the term - C,( C:l, ei - 1) introduced into the 
objective function (3.6) has no effect on the minimal value of the objective 
function, but does affect the value of the derivative of the objective function, 
which will be required later. 

now redefine 
(4?27 . . . , en,, en.+l 

13 to be the (n! f 1) -dimensional vector 
, )‘, and V to be the (n! + 1)-dimensional differential operator 

with respect to 0. The function Q(0) remains cD(0, , 0, , . . . , e,,). 
Let w be the (n! + 1)-dimensional vector (l/n!, l/n!, . . . , l/n!, 1)‘. We then 

have 

w’Vf(w) = w’V@(w) - c, i q + 2M,w,!+l(w,!+1 - 1) 
i=l 

= 
0, 

where we define C,, to have the value 

Problem (3.6)-(3.8) has the form of problem (2.1)-(2.2) where G(8) = (g,(8), 
g2(e), . . . , g,!+r (6)). So by theorem 1, if a vector f3 can be found which satisfies 
the Kuhn-Tucker conditions, and if a suitable 17 can be found, then 0 will be a 
global minimum in problem (3.6)-(3.8). It will be shown that w is such a vector. 

For problem (3.6)-(3.8) the Kuhn-Tucker condition (2.3) at o is 
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a@(o) 
n!+l 

-- 
ae, 

c, + c U[ * =O, i-1,2, 
I=1 I 

and2M,(w,,+,-l)=O. 

That is, respectively, 
n!+l 

o+ c .,y=o, i = 1,2,. . . , n! , 
I=1 I 

andO=O. 

The Kuhn-Tucker condition (2.4) at o is 

Ul&(W) = 0 > z-1,2 )...) n!+l. 

The Kuhn-Tucker condition (2.5) at o is 

U,bO, z=1,2 )...) n!+l. 

,n! > 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

So all the Kuhn-Tucker conditions (3.9)-(3.12) are satisfied at o if we put 

u,=o, z-1,2 )...) n!+l. (3.13) 

We now define the (n ! + 1)-dimensional kernel ~(8, w). Divide the constraint 
set (3.7)-(3.8) into two subsets A and B: 

A=u4f(~)-fb)<% 

B={81f(8)-f(w)aO}. 

Define 

i 

f(e>-f(w) z if8EA 
T(R z> = Of(z) 9 

0 ifeEB, 
(3.14) 

where z is of the form (l/n+ E, l/n! - E, l/n!, l/n!, . . . ,lln!,l-•E) where 
0~ E <l/n! and ~40. So z satisfies the constraints (3.7)-(3.8), and 

1 
z’Vf(z) = z’vqz) - c, 2 zi + 2M,(z,!+I - lb,!+1 > 

i=l 

= Z’VaqZ) - w’V@(o) + 2M,(-e)(l - E) ) 

= n(@(z) - Q(o)) - 2M,e(l- e) , by Euler’s theorem , 

= n(z - co)‘v~(z*) 

- 2M,~(l- e) , for some z* between z and w , 

= E n ~ - --) -2M,(l- l )] : [C 
a(a(z*) aqz*> 

az* az2 (3.15) 

(3.16) < 0 for sufficiently large M, 
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In A we have 

(i) lim lIw-rlf+O 77’(ey zF.(z) = ,,w~~+o 
f(O) -f(w) z,of(z) 

z’Vf(z) 

= f(e) -f(w) . 
So, in A, f(0) is Weak Type I with respect to q(8, w) at o. 

(ii) lim 
II-~ll-tO 77vt m,(z) = ,,up~+o t-(e) -f(w) zlvg,(*) 

z’W(z> 
7 

= 0, 

= -g*(w) , by (3.7) . 

So, in A, gl(0) is Weak Type I with respect to n(0, w) at o. 

(iii) lim ,,w~z,,-fo 77’(@ ZF%i+1(Z) = ,,w”lff-o fte) -f(O) z’vg.+l(z) 
z’Vf(z) z ’ 

i = 1,2, . . . ,n! 

= lim ““z&y (-Zi> > i=1,2 ,..., n!, 
II~-=/I+o 
s 0, since f(e) -f(w) < 0 , z’Vf(z) < 0 

and-zisO, i=l,2 ,..., n!, 

c -g,+,(w) , by (3.8) . 

So, in A, g,+l(0) i = 1,2,. . . , n!, is Weak Type I with respect to n(f3, w) at w. 
In B we have 

(i) ,,k$o $(8, z)Vf(z) = 0 , <f(e) -f(w) , by definition of B . 

So, in B, f(e) is Weak Type I with respect to n(0, w) at w 

(ii) lim ,,_-=,,_o~‘(e,z)vg,(z)=o, l-1,2, . . . . n!+i, 

s -gl(w) , I = 1,2, . . . , n! + 1 , by (3.7)-(3.8) . 

So, in B, gI(f3), I= 1,2, . . . , n! + 1, is Weak Type I with respect to n(8, w) at w. 
So it has been shown that all the functions in problem (3.6)-(3.8) are Weak 

Type I with respect to the same n at w = (1 ln!, 1 ln!, . . . , 1 ln!, 1)‘; and since the 
Kuhn-Tucker conditions are satisfied at o the minimum value of f(0) is Q(w) 
which equals per( CyL, o,P,) in the equivalent problem (3.1)-(3.3). Since each 
element in the matrix CyL, w,P, consists of the sum of (n - l)! of the wits each of 
which has the value l/n! at minimum, then it follows that each element has the 
value (n - l)! ln! = n-l at minimum. 

That is, n-l(l, . . . , 1)’ is a global minimum in the van der Waerden Problem. 
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